Beneficial and Harmful Explanatory Machine Learning

Lun Ai¹,Stephen H. Muggleton¹, Céline Hocquette¹, Mark Gromowski² and Ute Schmid²

¹Department of Computing, Imperial College London; ²Cognitive Systems Group, University of Bamberg

XAI Background

Common drawbacks in relevant studies were identified and discussed in recent surveys which are summarised as follows:

- Under-specified and ambiguous definitions
- A lack of empirical data to support claims
- Limited references to valuable social science literature
- No or little accounting for humans' perspective
- Not enough emphasis recently on the harmful side

Objective: Explore comprehensibility of machine learned logic programs in interactive machine-human teaching contexts.

MIL and predicate invention

Meta-Interpretive Learning (MIL) is a sub-field of Inductive Logic Programming (ILP). Given higher-order clauses \mathcal{M} MIL uses logic programming to represent examples by a program \mathcal{H} and background knowledge \mathcal{B} ,

$$\forall e + \in E \quad \mathcal{H} \cup \mathcal{B} \cup \mathcal{M} \models e + \\ \forall e - \in E \quad \mathcal{H} \cup \mathcal{B} \cup \mathcal{M} \not\models e -$$

MIL supports predicate invention, dependent learning, learning of recursions and higher-order programs.

Human comprehension

Given a definition D, a group of humans H, a symbolic machine learning algorithm M, **explanatory effect** $E_{ex}(D,H,M(E))$ of the theory M(E) learned from examples E is

$$E_{ex}(D, H, M(E)) = C_{ex}(D, H, M(E)) - C(D, H, E)$$

Machine-explained human comprehension $C_{ex}(D, H, M(E))$,

- M(E) is beneficial to H if $E_{ex}(D, H, M(E)) > 0$
- M(E) is harmful to H if $E_{ex}(D, H, M(E)) < 0$
- M(E) does not have observable effect on H

is the mean accuracy of H after brief study of an explanation based on M(E) can classify new material selected from the domain of D. C(D,H,E) is the unaided human comprehension of examples E.

Cognitive window

We estimate the mental execution complexity of a query by new variants of Kolmogorov complexity, **cognitive cost** of datalog program Cog and problem solution CogP. We hypothesise a bound on human hypothesis space size B and postulated a **cognitive window** which includes two constraints:

1.
$$E_{ex}(D, H, M(E)) < 0$$
 if $|S| > B(M(E), H)$
2. $E_{ex}(D, H, M(E)) \le 0$ if $Cog(M(E), x) \ge CogP(E, \overline{M}, \phi, x)$

Rule verbalisation utilises declarative memory, and an increase in computational complexity and working memory corresponds to a negative effect on human performance.

Results

MS and MM denote human self-learning and machine-aided learning.

- win1: violates the cognitive cost constraint and $E_{ex}=0$
- win2: does not violate cognitive window constraints and $E_{ex} > 0$
- •win3: violates the hypothesis space size constraint, could only learn a maximum of four clauses and $E_{ex} < 0$

Materials

A MIL system *MIPIain* learns a complete and consistent logic program (below) for tasks win_1 , win_2 and win_3 which are Noughts and Crosses positions with increasing minimax search depth.

Depth	Rules
1	win_1(A,B):-move(A,B),won(B)
2	win_2(A,B):-move(A,B),win_2_1(B)
	win_2_1(A):-number_of_pairs(A,x,2), number_of_pairs(A,o,0)
3	win_3(A,B):-move(A,B),win_3_1(B)
	win_3_1(A):-number_of_pairs(A,x,1),win_3_2(A)
	win_3_2(A):-move(A,B),win_3_3(B)
	win_3_3(A):-number_of_pairs(A,x,0),win_3_4(A)
	win_3_4(A):-win_2(A,B),win_2_1(B)

MIPlain which is a variant of MIL game learning framework MIGO learns a winning Noughts and Crosses strategy. Textual explanations are translated from the program above. An example of visual and textual explanations is presented below.

Future and ongoing works

- More interactive human-machine explanatory teaching
- Teaching explanations from stochastic logic programs
- Improving explanatory beneficiality via sequential teaching
- Behavioural debugging of human errors by ILP