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Highlights

Genome-scale metabolic network models (GEMs) are blueprints for cellular engineering.

This GEM (iML1515) [3] of a widely used bacterial strain has 1515 genes and 2719 reactions.

Problem 1. GEMs do not always classify how multiple genes interact correctly.

Problem 2. Traditional logic programming cannot efficiently explore pathways in GEMs.

Problem 3. Learning interactions between multiple genes requires a large number of data.

Impact. More reliable GEMswould significantly improve the robustness of cellular engineering.

Solution. We propose Boolean Matrix Logic Programming (BMLP) to improve the runtime

efficiency of datalog queries by up to 1000x. Our active learning system BMLPactive requires

90% fewer experiments than random experimentation.

Boolean Matrix Logic Programming (BMLP)

Compared to traditional logic programming, BMLP uses boolean matrices to evaluate recursive

datalog programs with arity at most two and at most two body literals, namely the H2
2 program

class [4]. Evaluating a H2
2 program is reduced to computing the closure of boolean matrices.

reaction(X, Y )← metabolites(X, Y ).
pathway(X, Y )← reaction(X, Y ).
pathway(X, Y )← reaction(X, Z), pathway(Z, Y ).

Mapping reactions to boolean matrices. We implemented a BMLP module called BMLP-IE that

computes v∗, the closure of pathway products, using boolean matrix operations. Input v encodes

source chemical metabolites. A reaction is represented in two boolean matrices, R1 and R2.

BMLP - higher runtime efficiency

Question. How much runtime improvement can BMLP modules bring?

Comparisons. BMLP-SMP [1] is an optimised module based on BMLP-IE. We compared BMLP-

SMP, Souffle, B-Prolog, Clingo and SWI-Prolog in evaluating the closure of the pathway program.

Result 1. BMLP-SMP’s runtime is O(n3) and bounded by a cubically growing curve (grey).

Result 2. In the above figure [1], BMLP-SMP is at least 1 order of magnitude faster than Souffle,

B-Prolog, Clingo or SWI-Prolog when the program contains ∼25,000 facts.

Result 3. In [1] we show BMLP-SMP is >1000x faster than Souffle, B-Prolog, Clingo or SWI-

Prolog when the program contains ∼12,500,000 facts, since BMLP-SMP is only affected by n.

BMLPactive - the first logic programming system to learn from GEMs

BMLPactive selects experiments to minimise the expected value of a user-defined cost function

and uses BMLP-IE to prune gene-reaction associations inconsistent with actively acquired labels.

Certain genetic mutations would block pathways, causing cells to die (positive label). BMLPactive
finds a gene-reaction association hypothesis to explain the pathway blockage and lethality. It en-

codes the GEM iML1515 as boolean matrices and uses BMLP-IE to classify the genetic mutation

experiment labels for every hypothesis. It consults a data source to request ground truth labels.

BMLPactive iteratively refutes hypotheses inconsistent with ground truth labels.

Active learning

Posterior probability estimation. BMLPactive uses the Minimal Description Length principle

and the compression score of a hypothesis h [2] to estimate the posterior probability:

compression(h, E) = |E+| − |E
+|

pch
(size(h) + fph)

p′(h|E) = 2compression(h,E)∑
hi∈H 2compression(hi,E)

E are labelled examples and E+ are positive examples. pch and fph are the number of positive

predictions and false positive coverage.

Experiment selection. BMLPactive uses the following heuristic function from [2] to select an

experiment from leftover candidate experiments T with approximated minimum expected cost:

EC(H, T ) ≈ mint∈T [Ct + p(t)(meant′∈T−{t}Ct′)JHt

+ (1− p(t))(meant′∈T−{t}Ct′)JHt
]

Ht and Ht are subsets of hypotheses H consistent and inconsistent with t’s label. JHt
andJHt

are

calculated according to the entropy −
∑

h∈H p′(h|E) log2(p′(h|E)) where H is replaced by Ht or

Ht. The probability p′(h|E) is calculated from the compression function. p(t) is the probability

that the label of the experiment t is positive and is computed by the probability sum of consistent

hypotheses
∑

h∈Ht
p′(h|E). Ct is a user-defined experiment cost function.

Questions. Can BMLPactive re-discover a digenic function involving the key gene tyrB in the

aromatic amino acid biosynthesis pathways? How much experimental data does it require?

Comparisons. The random selection strategy randomly sampled N instances from the experi-

mental design space. BMLPactive selected N experiments from this space to actively learn from

the hypothesis space. Both methods output the hypothesis with the highest compression.

Result 4. BMLPactive successfully recovers this key digenic function with N = 20 experiments.

Result 5. BMLPactive requires >90% fewer number of experiments needed compared to random

experiment selection. It provides higher information gain from each experiment compared to

random experiment selection.
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