¹Department of Computing, Imperial College London; ²Cognitive Systems Group, University of Bamberg

XAI Background

A recent resurgence of Explainable Artificial Intelligence (XAI) has led to numerous studies and discussions in AI and Machine Learning that seek to ensure understandability. Common drawbacks in relevant studies were identified and discussed in [5, 4, 2] which are summarised as follows:

- Under-specified and ambiguous definitions
- A lack of empirical data to support claims
- Limited references to valuable social science literature
- No or little accounting for humans' perspective
- Not enough emphasis recently on the harmful side

Objective: Explore comprehensibility of machine learned logic programs in interactive machine-human teaching contexts.

MIL and predicate invention

Meta-Interpretive Learning (MIL) is a sub-field of Inductive Logic Programming (ILP) which supports predicate invention, dependent learning, learning of recursions and higher-order programs. Given a set of higher-order clauses \mathcal{M} MIL uses logic programming to represent examples by a program \mathcal{H} and background knowledge \mathcal{B} .

> $\forall e + \in E \quad \mathcal{H} \cup \mathcal{B} \cup \mathcal{M} \models e +$ $\forall e - \in E \quad \mathcal{H} \cup \mathcal{B} \cup \mathcal{M} \not\models e -$

In the case background knowledge \mathcal{B} of an ILP system is extended to $\mathcal{B} \cup \mathcal{H}$, we call predicate symbol $p \in P$ an Invention iff p is defined in \mathcal{H} but not in \mathcal{B} .

Human comprehension

The operational definition of comprehensibility of logic programs given in [6] has been taken as the basis for human experimentation and theoretical frameworks to account for explanatory effects. Given a definition D, a group of humans H, a symbolic machine learning algorithm M, the **explanatory effect** $E_{ex}(D, H, M(E))$ of the theory M(E) learned from examples E is

$$E_{ex}(D, H, M(E)) = C_{ex}(D, H, M(E)) - C(D, H, E)$$

The machine-explained human comprehension $C_{ex}(D, H, M(E))$ of examples E is the mean accuracy with which a human $h \in H$ after brief study of an explanation based on M(E) can classify new material selected from the domain of D. C(D, H, E) is the unaided human comprehension of examples E. We then relate the explanatory effectiveness of a theory to comprehensibility:

- M(E) learned from examples E is *beneficial* to H if $E_{ex}(D, H, M(E)) > 0$
- M(E) learned from examples E is harmful to H if $E_{ex}(D, H, M(E)) < 0$
- M(E) learned from examples E does not have observable effect on H

Due to the analogy between declarative understanding of a logic program and understanding of a natural language explanation, explanatory effects of machine learned theory can be examined after presentation of explanations in the form of English sentences.

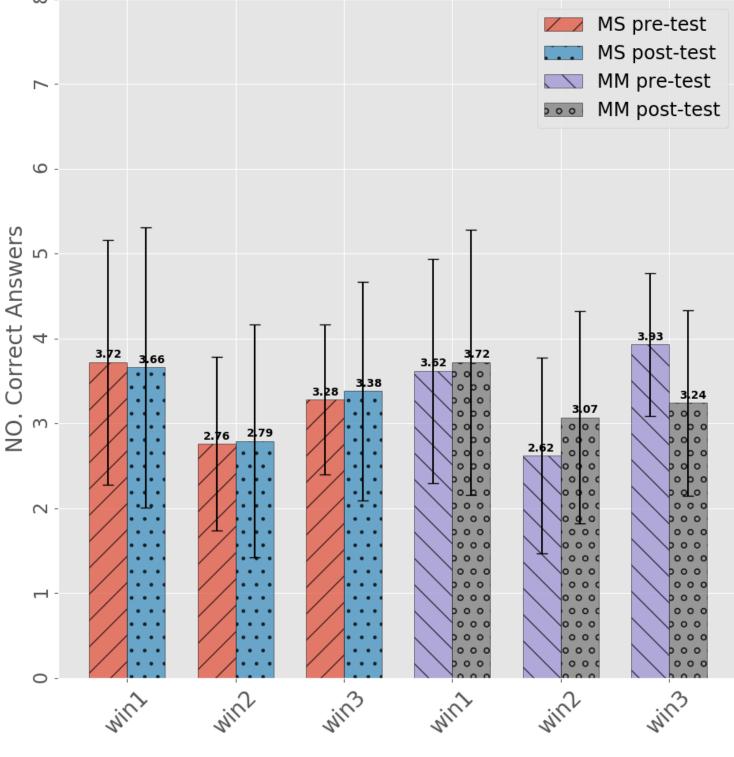
Lun Ai¹, Stephen H. Muggleton¹, Céline Hocquette¹, Mark Gromowski² and Ute Schmid²

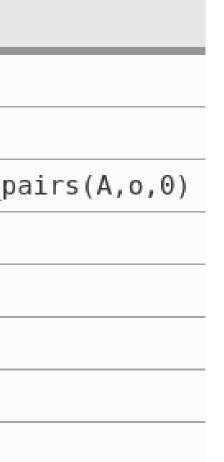
Cognitive window

We estimate the mental execution complexity of a query by a new variant of Kolmogorov complexity [3] cognitive cost of datalog program Cog and problem solution CogP. We hypothesise a bound on human hypothesis space size B and postulated a **cognitive window** which includes two constraints:

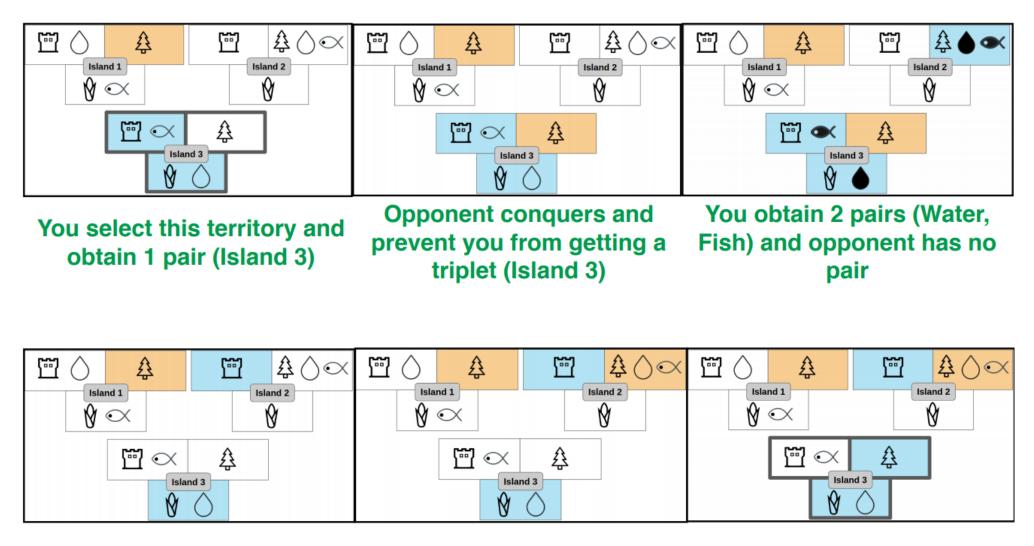
- **1.** $E_{ex}(D, H, M(E)) < 0$ if |S| > B(M(E), H)
- 2. $E_{ex}(D, H, M(E)) \leq 0$ if $Cog(M(E), x) \geq CogP(E, \overline{M}, \phi, x)$

Results


A MIL system *MIPlain* learns a complete and consistent logic program (below) for tasks win_1 , win_2 and win_3 which are Noughts and Crosses positions with increasing minimax search depth.


Depth	Rules
1	<pre>win_l(A,B):-move(A,B),won(B)</pre>
2	win_2(A,B):-move(A,B),win_2_1(B)
	<pre>win_2_1(A):-number_of_pairs(A,x,2), number_of_pairs(A,x,2), number_of_pai</pre>
3	win_3(A,B):-move(A,B),win_3_1(B)
	<pre>win_3_1(A):-number_of_pairs(A,x,1),win_3_2(A)</pre>
	win_3_2(A):-move(A,B),win_3_3(B)
	<pre>win_3_3(A):-number_of_pairs(A,x,0),win_3_4(A)</pre>
	win_3_4(A):-win_2(A,B),win_2_1(B)

The following diagram shows predictive accuracy for tasks before and after training. MS was human self-learning and MM was aided by machine explanations.


- win_1 : violates the cognitive cost constraint and $E_{ex} = 0$
- win 2: does not violate cognitive window constraints and $E_{ex} > 0$
- win 3: violates the hypothesis space size constraint for population that could only remember a maximum of four clauses and $E_{ex} < 0$

Materials

The material is an isomorphism of Noughts and Crosses that we designed specifically for the experiment. Textual explanations are translated from a machine learned logic theory by *MIPlain* which is a designed variant of MIL game learning framework *MIGO* [7] for winning Noughts and Crosses using additional primitives.

Contrast: Not enough pair(s)

The above diagram illustrates contrastive sequences of good and bad moves. Textual explanations are presented along with visualisations which instantiate the teaching of machine learned theory.

Future and ongoing works

- More interactive human-machine explanatory teaching
- Teaching explanations from stochastic logic programs
- Improving explanatory beneficiality via sequential teaching
- Behavioural debugging of human errors by ILP

References

- [1] L. Ai et al. "Beneficial and harmful explanatory machine learning". In: *Machine Learning. In Press online available* (2021). DOI: https://doi.org/10.1007/s10994-020-05941-0.
- [2] A. A. Freitas. "Comprehensible Classification Models: A Position Paper". In: SIGKDD Explor. *Newsl.* 15 (2014), pp. 1–10.
- [3] A. N. Kolmogorov. "On Tables of Random Numbers". In: Sankhya: The Indian Journal of Statistics, Series A, 207.25 (1963), pp. 369–375.
- [4] Z. Lipton. "The Mythos of Model Interpretability". In: Communications of the ACM 61 (2018), pp. 36–43.
- [5] T. Miller. "Explanation in artificial intelligence: Insights from the social sciences". In: Artificial *Intelligence* 267 (2019), pp. 1–38.
- [6] S. Muggleton et al. "Ultra-Strong Machine Learning: comprehensibility of programs learned with ILP". In: *Machine Learning* 107 (2018), pp. 1119–1140.
- [7] S. H. Muggleton and C. Hocquette. "Machine Discovery of Comprehensible Strategies for Simple Games Using Meta-interpretive Learning". In: New Generation Computing 37 (2019), pp. 203–217.

Contrast: Not enough pair(s)